Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 317, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172381

RESUMO

The study of the large paraphyletic group of extinct 'palaeoniscoid' fishes has shed light on the diversity and evolutionary history of basal actinopterygians. However, only a little ontogenetic information about 'palaeoniscoids' is known because their records in the early stages of development are scarce. Here, we report on a growth series of 'palaeoniscoids' in the juvenile stage from the Upper Triassic Amisan Formation of South Korea. Fourteen specimens, including five counterpart specimens, represent a new taxon, Megalomatia minima gen. et sp. nov., exhibiting ontogeny and exceptional preservation with the eyes possibly containing the crystalline lens, the otoliths, and the lateral line canals without covering scales. This discovery allows us to discuss the adaptations and evolution of basal actinopterygians in more detail than before. The otoliths in situ of Megalomatia support the previous interpretation that basal actinopterygians have a sagitta as the largest otolith. The trunk lateral line canal, which runs under the scales instead of passing through them, represents a plesiomorphic gnathostome trait. Notably, the large protruded eyes suggest that Megalomatia probably has binocular vision, which would have played a significant role in targeting and catching prey with the primitive jaw structure. In addition, the firstly formed skeletal elements such as the jaws, pectoral girdle, and opercular series, and the posteroanterior pattern of squamation development are likely linked to the adaptation of young individuals to increase their viability for feeding, respiration, and swimming.


Assuntos
Fósseis , Arcada Osseodentária , Animais , Peixes , República da Coreia , Filogenia
2.
Sci Rep ; 14(1): 549, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272887

RESUMO

Numerous non-avian dinosaurs possessed pennaceous feathers on their forelimbs (proto-wings) and tail. Their functions remain unclear. We propose that these pennaceous feathers were used in displays to flush hiding prey through stimulation of sensory-neural escape pathways in prey, allowing the dinosaurs to pursue the flushed prey. We evaluated the escape behavior of grasshoppers to hypothetical visual flush-displays by a robotic dinosaur, and we recorded neurophysiological responses of grasshoppers' escape pathway to computer animations of the hypothetical flush-displays by dinosaurs. We show that the prey of dinosaurs would have fled more often when proto-wings were present, especially distally and with contrasting patterns, and when caudal plumage, especially of a large area, was used during the hypothetical flush-displays. The reinforcing loop between flush and pursue functions could have contributed to the evolution of larger and stiffer feathers for faster running, maneuverability, and stronger flush-displays, promoting foraging based on the flush-pursue strategy. The flush-pursue hypothesis can explain the presence and distribution of the pennaceous feathers, plumage color contrasts, as well as a number of other features observed in early pennaraptorans. This scenario highlights that sensory-neural processes underlying prey's antipredatory reactions may contribute to the origin of major evolutionary innovations in predators.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Membro Anterior/fisiologia , Estimulação Luminosa , Plumas , Evolução Biológica , Fósseis
3.
Elife ; 122023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719067

RESUMO

The avian palaeognath phylogeny has been recently revised significantly due to the advancement of genome-wide comparative analyses and provides the opportunity to trace the evolution of the microstructure and crystallography of modern dinosaur eggshells. Here, eggshells of all major clades of Palaeognathae (including extinct taxa) and selected eggshells of Neognathae and non-avian dinosaurs are analysed with electron backscatter diffraction. Our results show the detailed microstructures and crystallographies of (previously) loosely categorized ostrich-, rhea-, and tinamou-style morphotypes of palaeognath eggshells. All rhea-style eggshell appears homologous, while respective ostrich-style and tinamou-style morphotypes are best interpreted as homoplastic morphologies (independently acquired). Ancestral state reconstruction and parsimony analysis additionally show that rhea-style eggshell represents the ancestral state of palaeognath eggshells both in microstructure and crystallography. The ornithological and palaeontological implications of the current study are not only helpful for the understanding of evolution of modern and extinct dinosaur eggshells, but also aid other disciplines where palaeognath eggshells provide useful archive for comparative contrasts (e.g. palaeoenvironmental reconstructions, geochronology, and zooarchaeology).


About 50 species of birds on the planet today do not belong to the same group as the other 10,000 currently in existence. Known as the paleognaths, this small clade features many of the largest and heaviest avian specimens on Earth, bringing together ostriches and their distant South American relatives the rheas, as well as emus and cassowaries. Kiwis and ground-dwelling species known as tinamous complete the family. None of these birds can fly, except for the tinamous. Paleognath eggs are also somewhat distinct from the rest of the avian population, being larger and sporting thicker shells. Advanced genetic analyses in the late 2000's have upended researchers' understanding of in what sequence these birds have evolved, and how they are related to each other. The new phylogenetic family tree offers the opportunity to re-evaluate previous conclusions about this group, which could in turn clarify the evolution and lifestyle of flightless modern and extinct dinosaurs. Choi et al. decided to use this updated genetic information to better understand how paleognath eggs have evolved. Traditionally, these have been loosely classified into three types (rhea-style, ostrich-style and tinamou-style) based on various morphological features. Their microstructure, however, remains poorly studied, and it is unclear whether this categorisation reflects evolutionary processes. Aiming to fill this gap, Choi et al. employed electron microscopy approaches to examine the microstructure of the eggshell in all groups of paleognath birds (including the now extinct moas from New Zealand and elephant birds from Madagascar), as well as in selected species of flying birds and non-avian dinosaurs. Combined with the new evolutionary tree and additional analyses, these experiments suggest that the ancestor of the paleognaths laid rhea-style eggs, which are still the most common type amongst the family. In fact, several non-paleognath bird eggs also showed these features. In contrast, ostrich-style and tinamou-style eggs seem to have evolved independently in several distantly related species within the group. Equipped with this knowledge, it may become possible for ornithologists to decipher how eggshells evolved in other lineages of flightless birds, and for palaeontologists to better interpret fossil bird and other dinosaur eggs.


Assuntos
Aves , Casca de Ovo , Animais , Cristalografia , Casca de Ovo/química , Aves/genética , Filogenia , Genoma , Evolução Biológica
4.
Commun Biol ; 5(1): 1185, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456823

RESUMO

Streamlining a body is a major adaptation for aquatic animals to move efficiently in the water. Whereas diving birds are well known to have streamlined bodies, such body shapes have not been documented in non-avian dinosaurs. It is primarily because most known non-avian theropods are terrestrial, barring a few exceptions. However, clear evidence of streamlined bodies is absent even in the purported semiaquatic groups. Here we report a new theropod, Natovenator polydontus gen. et sp. nov., from the Upper Cretaceous of Mongolia. The new specimen includes a well-preserved skeleton with several articulated dorsal ribs that are posterolaterally oriented to streamline the body as in diving birds. Additionally, the widely arched proximal rib shafts reflect a dorsoventrally compressed ribcage like aquatic reptiles. Its body shape suggests that Natovenator was a potentially capable swimming predator, and the streamlined body evolved independently in separate lineages of theropod dinosaurs.


Assuntos
Dinossauros , Animais , Natação , Aclimatação , Aves , Água
5.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142598

RESUMO

Raman micro-spectroscopy is a non-destructive and non-contact analytical technique that combines microscopy and spectroscopy, thus providing a potential for non-invasive and in situ molecular identification, even over heterogeneous and rare samples such as fossilized tissues. Recently, chemical imaging techniques have become an increasingly popular tool for characterizing trace elements, isotopic information, and organic markers in fossils. Raman spectroscopy also shows a growing potential in understanding bone microstructure, chemical composition, and mineral assemblance affected by diagenetic processes. In our lab, we have investigated a wide range of different fossil tissues, mainly of Mesozoic vertebrates (from Jurassic through Cretaceous). Besides standard spectra of sedimentary rocks, including pigment contamination, our Raman spectra also exhibit interesting spectral features in the 1200-1800 cm-1 spectral range, where Raman bands of proteins, nucleic acids, and other organic molecules can be identified. In the present study, we discuss both a possible origin of the observed bands of ancient organic residues and difficulties with definition of the specific spectral markers in fossilized soft and hard tissues.


Assuntos
Ácidos Nucleicos , Oligoelementos , Animais , Fósseis , Minerais , Análise Espectral Raman/métodos
6.
PeerJ ; 10: e13176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402094

RESUMO

Here we report a new articulated skeleton of Yamaceratops dorngobiensis (MPC-D 100/553) from the Khugenetjavkhlant locality at the Shine Us Khudag (Javkhlant Formation, ?Santonian-Campanian) of the eastern Gobi Desert, Mongolia, which represents the first substantially complete skeleton and the first juvenile individual of this taxon. The specimen includes a nearly complete cranium and large portions of the vertebral column and appendicular skeleton. Its skull is about 2/3 the size of the holotype specimen, based on mandibular length. Its juvenile ontogenetic stage is confirmed by multiple indicators of skeletal and morphological immaturity known in ceratopsians, such as the long-grained surface texture on the long bones, the smooth external surface on the postorbital, open neurocentral sutures of all caudal vertebrae, a large orbit relative to the postorbital and jugal, the low angle of the lacrimal ventral ramus relative to the maxillary teeth row, narrow frontal, and straight ventral edge of the dentary. Osteohistological analysis of MPC-D 100/553 recovered three lines of arrested growth, implying around 3 years of age when it died, and verified this specimen's immature ontogenetic stage. The specimen adds a new autapomorphy of Yamaceratops, the anteroventral margin of the fungiform dorsal end of the lacrimal being excluded from the antorbital fossa. Furthermore, it shows a unique combination of diagnostic features of some other basal neoceratopsians: the ventrally hooked rostral bone as in Aquilops americanus and very tall middle caudal neural spines about or more than four times as high as the centrum as in Koreaceratops hwaseongensis, Montanoceratops cerorhynchus, and Protoceratops andrewsi. The jugal with the subtemporal ramus deeper than the suborbital ramus as in the holotype specimen is also shared with A. americanus, Liaoceratops yanzigouensis, and juvenile P. andrewsi. Adding 38 new scorings into the recent comprehensive data matrix of basal Neoceratopsia and taking into account the ontogenetically variable characters recovered Y. dorngobiensis as the sister taxon to Euceratopsia (Leptoceratopsidae plus Coronosauria). A second phylogenetic analysis with another matrix for Ceratopsia also supported this position. The new phylogenetic position of Y. dorngobiensis is important in ceratopsian evolution, as this taxon represents one of the basalmost neoceratopsians with a broad, thin frill and hyper-elongated middle caudal neural spines while still being bipedal.


Assuntos
Dinossauros , Dente , Animais , Filogenia , Mongólia , Crânio/anatomia & histologia , Dente/anatomia & histologia , Dinossauros/anatomia & histologia , Bochecha
7.
Sci Rep ; 11(1): 22928, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824329

RESUMO

A new ankylosaurid dinosaur, Tarchia tumanovae sp. nov., has been recovered from the Upper Cretaceous Nemegt Formation of Mongolia. It includes a well-preserved skull, dorsal, sacral, caudal vertebrae, sixteen dorsal ribs, ilia, a partial ischium, free osteoderms, and a tail club. The squamosal horns of T. tumanovae are divided into two layers, the external dermal layer and the underlying squamosal horn proper. The irregular ventral margin of the base of the upper dermal layer may represent a resorption surface, suggesting that the squamosal horns of some ankylosaurids underwent extreme ontogenetic remodeling. Localized pathologies on the dorsosacral ribs and the tail provide evidence of agonistic behaviour. The tail club knob asymmetry of T. tumanovae resulted from restricted bone growth due to tail club strikes. Furthermore, T. tumanovae had an anteriorly protruded shovel-shaped beak, which is a morphological character of selective feeders. Ankylosaurid diets shifted from low-level bulk feeding to selective feeding during the Baruungoyot and the Nemegt "age" (middle Campanian-lower Maastrichtian). This ankylosaurid niche shifting might have been a response to habitat change and competition with other bulk-feeding herbivores.

8.
PLoS One ; 16(9): e0256233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495977

RESUMO

The Late Cretaceous dinosaur record in southern South America has been improved recently; particularly with findings from Chorrillo and Cerro Fortaleza formations, both bearing ankylosaur remains, a clade that was not previously recorded in the Austral Basin. The dinosaur fauna of the type locality of Cerro Fortaleza Formation is known from -and biased to- large-sized sauropod remains and a single described taxon, the titanosaur Dreadnoughtus schrani. Here, we report the taxonomic composition of a site preserving thirteen isolated teeth and several osteoderms belonging to three dinosaur clades (Abelisauridae, Titanosauria, and Nodosauridae), and at least one clade of notosuchian crocodyliforms (Peirosauridae). They come from sediments positioned at the mid-section of the Cerro Fortaleza Formation, which is Campanian-Maastrichtian in age, adding valuable information to the abundance and biodiversity of this Cretaceous ecosystem. Since non-titanosaur dinosaur bones are almost absent in the locality, the teeth presented here provide a window onto the archosaur biodiversity of the Late Cretaceous in southern Patagonia. The nodosaurid tooth and small armor ossicles represent the first record of ankylosaurs for this stratigraphic unit. The peirosaurid material also represents the most austral record of the clade in South America.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Dente/anatomia & histologia , Animais , Argentina , Biodiversidade , Evolução Biológica , Ecossistema , Filogenia , América do Sul
9.
Sci Rep ; 11(1): 4101, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737515

RESUMO

A new articulated postcranial specimen of an indeterminate ankylosaurid dinosaur from the Upper Cretaceous (middle-upper Campanian) Baruungoyot Formation from Hermiin Tsav, southern Gobi Desert, Mongolia includes twelve dorsal vertebrae, ribs, pectoral girdles, forelimbs, pelvic girdles, hind limbs, and free osteoderms. The new specimen shows that Asian ankylosaurids evolved rigid bodies with a decreased number of pedal phalanges. It also implies that there were at least two forms of flank armor within Ankylosauridae, one with spine-like osteoderms and the other with keeled rhomboidal osteoderms. Unique anatomical features related to digging are present in Ankylosauridae, such as dorsoventrally flattened and fusiform body shapes, extensively fused series of vertebrae, anteroposteriorly broadened dorsal ribs, a robust humerus with a well-developed deltopectoral crest, a short robust ulna with a well-developed olecranon process, a trowel-like manus, and decreased numbers of pedal phalanges. Although not fossorial, ankylosaurids were likely able to dig the substrate, taking advantage of it for self-defence and survival.

10.
Sci Rep ; 10(1): 14442, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879388

RESUMO

Here we report a new quadrupedal trackway found in the Lower Cretaceous Daegu Formation (Albian) in the vicinity of Ulsan Metropolitan City, South Korea, in 2018. A total of nine manus-pes imprints show a strong heteropodous quadrupedal trackway (length ratio is 1:3.36). Both manus and pes tracks are pentadactyl with claw marks. The manus prints rotate distinctly outward while the pes prints are nearly parallel to the direction of travel. The functional axis in manus and pes imprints suggests that the trackmaker moved along the medial side during the stroke progressions (entaxonic), indicating weight support on the inner side of the limbs. There is an indication of webbing between the pedal digits. These new tracks are assigned to Novapes ulsanensis, n. ichnogen., n. ichnosp., which are well-matched not only with foot skeletons and body size of Monjurosuchus but also the fossil record of choristoderes in East Asia, thereby N. ulsanensis could be made by a monjurosuchid-like choristoderan and represent the first possible choristoderan trackway from Asia. N. ulsanensis also suggests that semi-aquatic choristoderans were capable of walking semi-erect when moving on the ground with a similar locomotion pattern to that of crocodilians on land.

11.
Sci Rep ; 9(1): 15493, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664171

RESUMO

Alvarezsaurid diversity has been markedly increased by recent discoveries from China. However, the number of alvarezsaurid specimens in the Nemegt Formation of Mongolia remained low since the initial report on Mononykus olecranus in 1993. Here we report three new alvarezsaurid specimens from this formation, which were associated with each other and also with multiple oviraptorid skeletons in a small multi-species assemblage. Two of the alvarezsaurid specimens represent a new taxon, Nemegtonykus citus gen. et sp. nov., which is mainly distinguished from other alvarezsaurids by the first sacral vertebra with a subtrapezoidal lamina, the second sacral centrum which is directly co-ossified with ilium, the posterodorsally oriented postacetabular process of ilium, and partial co-ossification between metatarsals II and IV. The other specimen is very similar to M. olecranus in morphology and referred to cf. Mononykus sp. Our phylogenetic analysis recovered Nemegtonykus as a parvicursorine forming a polytomy with several other taxa from the Gobi Desert. The presence of three alvarezsaurid individuals in the same locality indicates that the abundance of alvarezsaurids have been greatly underestimated in the Nemegt dinosaur faunas.


Assuntos
Dinossauros/classificação , Animais , China , Fósseis , Mongólia , Filogenia
12.
PLoS One ; 14(10): e0223471, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31665132

RESUMO

While there are now numerous records of dinosaurs from Cretaceous rocks around the state of Alaska, very few fossil records of terrestrial vertebrates are known from the Mesozoic rocks of the southwestern part of the state. Here we report the new discovery of extensive occurrences of dinosaur tracks from Aniakchak National Monument of the Alaska Peninsula. These tracks are in the Late Cretaceous (Maastrichtian) Chignik Formation, a cyclic sequence of rocks, approximately 500-600 m thick, representing shallow marine to nearshore marine environments in the lower part and continental alluvial coastal plain environments in the upper part of the section. These rocks are part of the Peninsular Terrane and paleomagnetic reconstructions based on the volcanic rocks of this terrane suggest that the Chignik Formation was deposited at approximately its current latitude which is almost 57° N. Recent field work in Aniakchak National Monument has revealed over 75 new track sites, dramatically increasing the dinosaur record from the Alaska Peninsula. Most of the combined record of tracks can be attributed to hadrosaurs, the plant-eating duck-billed dinosaurs. Tracks range in size from those made by full-grown adults to juveniles. Other tracks can be attributed to armored dinosaurs, meat-eating dinosaurs, and two kinds of fossil birds. The track size of the predatory dinosaur suggests a body approximately 6-7 m long, about the estimated size of the North Slope tyrannosaurid Nanuqsaurus. The larger bird tracks resemble Magnoavipes denaliensis previously described from Denali National Park, while the smaller bird tracks were made by a bird about the size of a modern Willet. Previous interdisciplinary sedimentologic and paleontologic work in the correlative and well-known dinosaur bonebeds of the Prince Creek Formation 1400km-1500km further north in Alaska suggested that high-latitude hadrosaurs preferred distal coastal plain or lower delta plain habitats. The ichnological record being uncovered in the Chignik Formation of southwestern Alaska is showing that the hadrosaur tracks here were also made in distal coastal and delta plain conditions. This similarity may corroborate the habitat preference model for Cretaceous high-latitude dinosaurs proposed for the data gathered from the Prince Creek Formation, and may indicate that at least Beringian hadrosaurids had similar habitat preferences regardless of latitude.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Paleontologia , Animais , Ecossistema , Meio Ambiente , Geografia , Parques Recreativos
13.
PLoS One ; 14(2): e0210867, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30726228

RESUMO

Recent discoveries of new oviraptorosaurs revealed their high diversity from the Cretaceous Period in Asia and North America. Particularly, at the family level, oviraptorids are among the most diverse theropod dinosaurs in the Late Cretaceous of Mongolia and China. A new oviraptorid dinosaur Gobiraptor minutus gen. et sp. nov. from the Upper Cretaceous Nemegt Formation is described here based on a single holotype specimen that includes incomplete cranial and postcranial elements. The most prominent characters of Gobiraptor are its thickened rostrodorsal end of the mandibular symphysis and a rudimentary lingual shelf on each side of the dentary. Each lingual shelf is lined with small occlusal foramina and demarcated by a weakly developed lingual ridge. This mandibular morphology of Gobiraptor is unique among oviraptorids and likely to be linked to a specialized diet that probably included hard materials, such as seeds or bivalves. The osteohistology of the femur of the holotype specimen indicates that the individual was fairly young at the time of its death. Phylogenetic analysis recovers Gobiraptor as a derived oviraptorid close to three taxa from the Ganzhou region in southern China, but rather distantly related to other Nemegt oviraptorids which, as the results of recent studies, are also not closely related to each other. Gobiraptor increases diversity of oviraptorids in the Nemegt Formation and its presence confirms the successful adaptation of oviraptorids to a mesic environment.


Assuntos
Biodiversidade , Dinossauros/fisiologia , Fósseis/anatomia & histologia , Adaptação Fisiológica , Animais , Dinossauros/anatomia & histologia , Comportamento Alimentar , Mandíbula/anatomia & histologia , Mongólia , Filogenia
14.
Sci Rep ; 8(1): 11706, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076347

RESUMO

We report details of a unique association of hadrosaur and therizinosaur tracks found in the Late Cretaceous lower Cantwell Formation, Denali National Park, central Alaska Range, Alaska. This rock unit is now well-documented as a source of thousands of fossil footprints of vertebrates such as fishes, pterosaurs, and avialan and non-avialan dinosaurs. The lower Cantwell Formation in this area consists of numerous fining-upward successions of conglomerates and pebbly sandstones, cross-stratified and massive sandstones, interbedded sandstones and siltstones, organic-rich siltstones and shales, and rare, thin, bentonites, typically bounded by thin coal seams, and it contains a diverse fossil flora. We report the first North American co-occurrence of tracks attributable to hadrosaurs and therizinosaurs in the lower Cantwell Formation. Although previously un-reported in North America, this association of hadrosaur and therizinosaur tracks is more characteristic of the correlative Nemegt Formation in central Asia, perhaps suggesting that parameters defining the continental ecosystem of central Asia were also present in this part of Alaska during the Latest Cretaceous.

15.
PLoS One ; 13(6): e0199496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29933400

RESUMO

The Gekkota is an important clade in the evolution of calcified eggshells in that some of its families lay rigid eggshells like archosaurs. However, the fundamental differences and similarities between the mechanism of rigid eggshell formation of the Gekkota and Archosauria have not been investigated thoroughly due to the lack of knowledge of gekkotan eggshells. Here, we report for the first time a comprehensive analysis of morphological, chemical compositional, and crystallographic features of rigid and soft gekkotan eggshells. Exhaustive morphological description provided common characters for gekkotan eggshells, as well as unique features of each species. We found that elemental distribution of rigid gekkotan eggshells is different from that of avian eggshells, especially in the case of Mg and P. In addition, the crystallographic features (size, shape, and alignment of calcite grains) of gekkotan eggshells are completely different from those of archosaur eggshells. The result of this study suggests that soft gekkotan eggshells are morphologically more similar to tuatara eggshells rather than soft eggshells of derived squamates. The chemical compositional analysis suggests that the eggshell may act as a mineral reservoir for P and F as well as Ca. More importantly, all chemical compositions and crystallographic features imply that the gekkotan eggshell formation may begin at the outer surface and growing down to the inner surface, which is opposite to the direction of the archosaur eggshell formation. This character would be crucial for identifying fossil gekkotan eggs, which are poorly known in paleontology. All these lines of evidence support that soft gekkotan and tuatara eggshells share the primitive characters of all lepidosaurid eggshells. Finally, gekkotan and archosaur rigid eggshells represent a typical example of convergent evolution in the lineage of the Sauropsida.


Assuntos
Evolução Biológica , Casca de Ovo/anatomia & histologia , Casca de Ovo/química , Lagartos/anatomia & histologia , Animais , Cristalografia por Raios X , Casca de Ovo/ultraestrutura , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Filogenia
16.
Sci Rep ; 8(1): 2617, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449576

RESUMO

Four heteropod lizard trackways discovered in the Hasandong Formation (Aptian-early Albian), South Korea assigned to Sauripes hadongensis, n. ichnogen., n. ichnosp., which represents the oldest lizard tracks in the world. Most tracks are pes tracks (N = 25) that are very small, average 22.29 mm long and 12.46 mm wide. The pes tracks show "typical" lizard morphology as having curved digit imprints that progressively increase in length from digits I to IV, a smaller digit V that is separated from the other digits by a large interdigital angle. The manus track is 19.18 mm long and 19.23 mm wide, and shows a different morphology from the pes. The predominant pes tracks, the long stride length of pes, narrow trackway width, digitigrade manus and pes prints, and anteriorly oriented long axis of the fourth pedal digit indicate that these trackways were made by lizards running bipedally, suggesting that bipedality was possible early in lizard evolution.


Assuntos
Evolução Biológica , Pé/anatomia & histologia , Membro Anterior/anatomia & histologia , Lagartos/anatomia & histologia , Corrida/fisiologia , Dedos do Pé/anatomia & histologia , Animais , Fósseis , Orientação Espacial , República da Coreia
17.
Sci Rep ; 7(1): 6393, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751667

RESUMO

A new oviraptorid dinosaur from the Late Cretaceous of Ganzhou, bringing oviraptrotid diversity of this region to seven taxa, is described. It is characterized by a distinct cassowary-like crest on the skull, no pleurocoels on the centra from the second through fourth cervical vertebrae, a neck twice as long as the dorsal vertebral column and slightly longer than the forelimb (including the manus). Phylogenetic analysis recovers the new oviraptorid taxon, Corythoraptor jacobsi, as closely related to Huanansaurus from Ganzhou. Osteochronology suggests that the type specimen of Corythoraptor had not reached stationary growth stage but died while decreasing growth rates. The histology implies that it would correspond to an immature individual approximately eight years old. We hypothesize, based on the inner structure compared to that in modern cassowaries, that the prominent casque of Corythoraptor was a multifunction-structure utilized in display, communication and probably expression of the fitness during mating seasons.


Assuntos
Dinossauros/anatomia & histologia , Dinossauros/classificação , Dinossauros/fisiologia , Fósseis , Animais , China
18.
PLoS One ; 11(3): e0150845, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007950

RESUMO

BACKGROUND: Ankylosaurs are one of the least explored clades of dinosaurs regarding endocranial anatomy, with few available descriptions of braincase anatomy and even less information on brain and inner ear morphologies. The main goal of this study is to provide a detailed description of the braincase and internal structures of the Early Cretaceous nodosaurid Pawpawsaurus campbelli, based on recently made CT scans. METHODOLOGY/PRINCIPAL FINDINGS: The skull of Pawpawsaurus was CT scanned at University of Texas at Austin (UTCT). Three-dimensional models were constructed using Mimics 18.0 (Materialise). The digital data and further processed 3D models revealed inaccessible anatomic structures, allowing a detailed description of the lateral wall of the braincase (obscured by other bones in the articulated skull), and endocranial structures such as the cranial endocast, the most complete inner ear morphology for a nodosaurid, and the interpretation of the airflow system within the nasal cavities. CONSLUSIONS/SIGNIFICANCE: The new information on the endocranial morphology of Pawpawsaurus adds anatomical data to the poorly understand ankylosaur paleoneurology. The new set of data has potential use not only in taxonomy and phylogeny, but also in paleobiological interpretations based on the relative development of sense organs, such as olfaction, hearing and balance.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Animais , América do Norte , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
19.
Sci Rep ; 5: 11490, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26133245

RESUMO

The Ganzhou area of Jiangxi Province, southern China is becoming one of the most productive oviraptorosaurian localities in the world. A new oviraptorid dinosaur was unearthed from the uppermost Upper Cretaceous Nanxiong Formation of Ganzhou area. It is characterized by an anterodorsally sloping occiput and quadrate (a feature shared with Citipati), a circular supratemporal fenestra that is much smaller than the lower temporal fenestra, and a dentary in which the dorsal margin above the external mandibular fenestra is strongly concave ventrally. The position of the anteroventral corner of the external naris in relation to the posterodorsal corner of the antorbital fenestra provides new insight into the craniofacial evolution of oviraptorosaurid dinosaurs. A phylogenetic analysis recovers the new taxon as closely related to the Mongolian Citipati. Six oviraptorid dinosaurs from the Nanxiong Formation (Ganzhou and Nanxiong) are distributed within three clades of the family. Each of the three clades from the Nanxiong Formation has close relatives in Inner Mongolia and Mongolia, and in both places each clade may have had a specific diet or occupied a different ecological niche. Oviraptorid dinosaurs were geographically widespread across Asia in the latest Cretaceous and were an important component of terrestrial ecosystems during this time.


Assuntos
Dinossauros/anatomia & histologia , Animais , China , Dinossauros/classificação , Extremidades/anatomia & histologia , Fósseis , Filogenia , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia
20.
Nature ; 515(7526): 257-60, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25337880

RESUMO

The holotype of Deinocheirus mirificus was collected by the 1965 Polish-Mongolian Palaeontological Expedition at Altan Uul III in the southern Gobi of Mongolia. Because the holotype consists mostly of giant forelimbs (2.4 m in length) with scapulocoracoids, for almost 50 years Deinocheirus has remained one of the most mysterious dinosaurs. The mosaic of ornithomimosaur and non-ornithomimosaur characters in the holotype has made it difficult to resolve the phylogenetic status of Deinocheirus. Here we describe two new specimens of Deinocheirus that were discovered in the Nemegt Formation of Altan Uul IV in 2006 and Bugiin Tsav in 2009. The Bugiin Tsav specimen (MPC-D 100/127) includes a left forelimb clearly identifiable as Deinocheirus and is 6% longer than the holotype. The Altan Uul IV specimen (MPC-D 100/128) is approximately 74% the size of MPC-D 100/127. Cladistic analysis indicates that Deinocheirus is the largest member of the Ornithomimosauria; however, it has many unique skeletal features unknown in other ornithomimosaurs, indicating that Deinocheirus was a heavily built, non-cursorial animal with an elongate snout, a deep jaw, tall neural spines, a pygostyle, a U-shaped furcula, an expanded pelvis for strong muscle attachments, a relatively short hind limb and broad-tipped pedal unguals. Ecomorphological features in the skull, more than a thousand gastroliths, and stomach contents (fish remains) suggest that Deinocheirus was a megaomnivore that lived in mesic environments.


Assuntos
Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis , Animais , Tamanho Corporal , Mongólia , Filogenia , Esqueleto , Crânio/anatomia & histologia , Coluna Vertebral/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...